Reverse Rotation Matrices

These matrices rotate a set of crystal field parameters (or Stevens operators) by $\Theta_1$=90$^o$ and $\Phi_1$=90$^o$ and again by $\Theta_2$=90$^o$ and $\Phi_2$=90$^o$.


\begin{displaymath}
\stackrel{=}{\mathbf S^{-1}}_2(\pi/2,\pi/2) = \left(
\begin...
...0 & 0 & 0 \\
0 & 0 & -3/2 & 0 & -1/2 \\
\end{array} \right)
\end{displaymath} (148)


\begin{displaymath}
\stackrel{=}{\mathbf S^{-1}}_4(\pi/2,\pi/2) = \left(
\begin...
...& 0 & 0 & 0 & 35/8 & 0 & 7/8 & 0 & 1/8 \\
\end{array} \right)
\end{displaymath} (149)


\begin{displaymath}
\stackrel{=}{\mathbf S^{-1}}_6(\pi/2,\pi/2) = \left(
\begin...
... 0 & -33/32 & 0 & %
-11/32 & 0 & -1/32 \\
\end{array} \right)
\end{displaymath} (150)



Martin Rotter 2017-01-10