Elastic Energy $E_{el}$

The elastic energy $E_{el}$ is bilinear in $a$


$\displaystyle E_{el}$ $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{ij} \frac{c_L(ij)-c_T(ij)}{2\vert\vec R_{ij}\vert^2}
(\vec R_{ij}^T\bar a \vec R_{ij})^2$ (79)
    $\displaystyle + \frac{c_T(ij)}{2} \vec R_{ij}^T\bar a^T\bar a \vec R_{ij}$  
  $\textstyle =$ $\displaystyle \frac{1}{2} \sum_{ij,\alpha\beta\gamma\delta} \frac{c_L(ij)-c_T(i...
...ha}R_{ij}^{\beta}R_{ij}^{\gamma}R_{ij}^{\delta}
a_{\alpha\beta}a_{\gamma\delta}$  
    $\displaystyle + \frac{c_T(ij)}{2} R_{ij}^{\alpha} R_{ij}^{\delta}
a_{\alpha\beta} \delta_{\beta\gamma} a_{\gamma\delta}$  

We calculate it's derivative with respect to $a_{\alpha\beta}$:


$\displaystyle \frac{\partial E_{el}}{\partial a_{\alpha\beta}}$ $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{ij,\gamma\delta} \frac{c_L(ij)-c_T(ij)}{\vert\ve...
...2}
R_{ij}^{\alpha}R_{ij}^{\beta}R_{ij}^{\gamma}R_{ij}^{\delta}
a_{\gamma\delta}$  
    $\displaystyle + \frac{c_T(ij)}{2} R_{ij}^{\alpha}R_{ij}^{\delta}
\delta_{\beta\gamma} a_{\gamma\delta} +$  
    $\displaystyle \frac{c_T(ij)}{2} R_{ij}^{\gamma} R_{ij}^{\beta}
a_{\gamma\delta} \delta_{\delta\alpha}$ (80)

we make use of the fact that the strain $\bar \epsilon$ is a symmetric tensor ( $\epsilon_{\alpha\beta}=\epsilon_{\beta\alpha}$) and a rotation is antisymmetric ( $\omega_{\alpha\beta}=-\omega_{\beta\alpha}$) and the linear transformation $\bar a$ can be written as $\bar a=\bar \epsilon + \bar \omega$. Thus derivatives with respect to the strain component $\epsilon_{\alpha\beta}$ with $\alpha,\beta=1,2,3,\alpha \le \beta$ can be written as


$\displaystyle \frac{\partial}{\partial \epsilon_{\alpha\beta}}$ $\textstyle =$ $\displaystyle \sum_{\gamma\delta=1,2,3}\frac{\partial a_{\gamma\delta}}{\partial \epsilon_{\alpha\beta}}
\frac{\partial}{\partial a_{\gamma\delta}}$ (81)
  $\textstyle =$ $\displaystyle \frac{\partial}{\partial a_{\alpha\beta}} + (1-\delta_{\alpha\beta})
\frac{\partial}{\partial a_{\beta\alpha}}$ (82)

We calculate the derivative of the elastic energy with respect to the strain:


$\displaystyle \frac{\partial E_{el}}{\partial \epsilon_{\alpha\beta}}$ $\textstyle =$ $\displaystyle \frac{\partial E_{el}}{\partial a_{\alpha\beta}} + \frac{\partial...
...\alpha}}-\delta_{\alpha\beta}
\frac{\partial E_{el}}{\partial a_{\alpha\alpha}}$ (83)
  $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{ij,\gamma\delta} (2-\delta_{\alpha\beta})\frac{c...
...2}
R_{ij}^{\alpha}R_{ij}^{\beta}R_{ij}^{\gamma}R_{ij}^{\delta}
a_{\gamma\delta}$  
    $\displaystyle + \frac{c_T(ij)}{2} a_{\gamma\delta} ( R_{ij}^{\alpha}R_{ij}^{\delta}
\delta_{\beta\gamma} + R_{ij}^{\gamma} R_{ij}^{\beta}
\delta_{\delta\alpha}$  
    $\displaystyle + R_{ij}^{\beta} R_{ij}^{\delta}
\delta_{\alpha\gamma} + R_{ij}^{\gamma}R_{ij}^{\alpha}
\delta_{\delta\beta}$  
    $\displaystyle - R_{ij}^{\alpha}R_{ij}^{\delta}
\delta_{\alpha\beta}\delta_{\bet...
...} - R_{ij}^{\gamma} R_{ij}^{\beta}
\delta_{\delta\alpha} \delta_{\alpha\beta} )$  

An we make also use of the definition of elastic constants to find


$\displaystyle c^{\alpha\beta\gamma\delta}$ $\textstyle =$ $\displaystyle \frac{\partial^2E_{el}}{\partial \epsilon_{\alpha\beta} \partial \epsilon_{\gamma\delta}}$ (84)
  $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{ij}(2-\delta_{\alpha\beta})(2-\delta_{\gamma\del...
...\vec R_{ij}\vert^2}
R_{ij}^{\alpha}R_{ij}^{\beta}R_{ij}^{\gamma}R_{ij}^{\delta}$  
    $\displaystyle + c_T(ij) ( R_{ij}^{\alpha}R_{ij}^{\delta}
\delta_{\beta\gamma} + R_{ij}^{\gamma}R_{ij}^{\beta}
\delta_{\delta\alpha}$  
    $\displaystyle + R_{ij}^{\beta} R_{ij}^{\delta}
\delta_{\alpha\gamma} + R_{ij}^{\gamma}R_{ij}^{\alpha}
\delta_{\delta\beta}$  
    $\displaystyle - R_{ij}^{\alpha}R_{ij}^{\delta}
\delta_{\alpha\beta}\delta_{\bet...
...} - R_{ij}^{\gamma}R_{ij}^{\alpha}
\delta_{\delta\alpha} \delta_{\alpha\beta} +$  
    $\displaystyle - R_{ij}^{\beta}R_{ij}^{\alpha}
\delta_{\alpha\gamma} \delta_{\ga...
...lta} - R_{ij}^{\gamma}R_{ij}^{\alpha}
\delta_{\delta\beta}\delta_{\gamma\delta}$  
    $\displaystyle + R_{ij}^{\alpha}R_{ij}^{\alpha}
\delta_{\alpha\beta}\delta_{\beta\gamma} \delta_{\gamma\delta} )$  

and rewrite the elastic energy in the well known fashion


$\displaystyle E_{el}$ $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{\alpha\beta\gamma\delta} c^{\alpha\beta\gamma\delta} \epsilon_{\alpha\beta}\epsilon_{\gamma\delta}$ (85)

Note that we have neglected the fact, that nonzero transversal springs will result in a dependence of the elastic energy on the rotation tensor $\bar \omega$ as can been seen by inserting a rotation into the second part of (83). 14 Therefore transversal springs have to be used with caution in the description of a phonon spectrum.

With the help of elastic constants we can rewrite the derivative of the elastic energy (87), again ignoring the rotation dependence:


$\displaystyle \frac{\partial E_{el}}{\partial \epsilon_{\alpha\beta}}$ $\textstyle =$ $\displaystyle \sum_{\gamma\delta=1,2,3,\gamma \le \delta} c^{\alpha\beta\gamma\delta} \epsilon_{\gamma\delta}$ (86)

To easy the indexing we apply the notation of Voigt

$\displaystyle \epsilon_1$ $\textstyle =$ $\displaystyle \epsilon_{11}$ (87)
$\displaystyle \epsilon_2$ $\textstyle =$ $\displaystyle \epsilon_{22}$  
$\displaystyle \epsilon_3$ $\textstyle =$ $\displaystyle \epsilon_{33}$  
$\displaystyle \epsilon_4$ $\textstyle =$ $\displaystyle 2\epsilon_{23}=2\epsilon_{32}$  
$\displaystyle \epsilon_5$ $\textstyle =$ $\displaystyle 2\epsilon_{31}=2\epsilon_{13}$  
$\displaystyle \epsilon_6$ $\textstyle =$ $\displaystyle 2\epsilon_{12}=2\epsilon_{21}$  

Note the elastic constants do not contain any prefactor in Voigt notation, i.e.

$\displaystyle c^{11}$ $\textstyle =$ $\displaystyle c^{1111}$ (88)
$\displaystyle c^{44}$ $\textstyle =$ $\displaystyle c^{2323}$  

There are 21 independent elastic constants, $c^{\alpha\beta}$ with $\beta=1,...,6$ and $\alpha \le \beta$. The other 60 elastic constants can be obtained from the symmetry relations $c^{\alpha\beta}=c^{\beta\alpha}$, $c^{\alpha\beta\gamma\delta}=c^{\beta\alpha\gamma\delta}=c^{\alpha\beta\delta\gamma}$.

The elastic energy in Voigt notation is given by


$\displaystyle E_{el}$ $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{\alpha\gamma=1,..,6} c^{\alpha\gamma} \epsilon_{\alpha}\epsilon_{\gamma}$ (89)